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Evolving Science

O Ecosystem Stocks & Composition

= Particulate and dissolved constituents; Organic
and inorganic

= Dominant planktonic and abiotic forms

a Material Flow through Ecosystems

= Uptake of CO, through photosynthesis (~50 Pg
y1); Carbon flow between upper ocean pools;
Carbon export to depth

O Ecosystem Health

‘ s n i ina?
Beyond Chlorophyll How fa_lst .are organisms growm_g ._
= What limits ecosystem productivity — ‘bottom-

up’ or ‘top down’?

O Ecosystem Change

= How do observed ecosystem changes reflect functioning of the
‘Earth System’?

0 Events & Challenging Regions

» Harmful algal blooms; Unique & ecologically important species;
Coastal & inland waters



http://oceancolor.gsfc.nasa.gov/SeaWiFS/HTML/SeaWiFS.BiosphereAnimation.html

Ocean Ecosystems & the A-Train

d Primary instrument is MODIS-Aqua

1 Additional ocean research with CALIPSO and
PARASOL (potential future applications of Glory)
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http://www.orbimage.com/

O Ecosystem stocks, composition, and change
Continuation of heritage products
Improved global coverage

Linking ecosystem change to forcings
Partitioning carbon pools (multi-platform)
O Constraints on productivity

= Physiological limitation by specific
resources (e.g., nutrients)

= Phytoplankton growth rates (multi-
platform)

O The complex ocean margins
= Advanced turbid water retrievals
= Land-ocean materials exchange
= Biomass in optically complex waters
= Tracking unique algal groups

benefits and issues
Remote Sensing of Environment 114 (2010) 1791-1804
Stéphane Maritorena **, Odile Hembise Fanton d'Andon ®, Antoine Mangin ®, David A. Siegel

<] Merged satellite ocean color data products using a bio-optical model: Characteristics,



Inter-sensor Comparison

0 SeaWiFS and MODIS-Aqua give similar chlorophyll anomaly trends

0 AVHRR and MODIS-Aqua give similar SST anomaly trends

O MODIS-Aqua has allowed continuation of record despite SeaWiFS
data gaps since 2008
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Observation: From regional to global
scale, changes in satellite chlorophyll
products are clearly linked changes in
the physical environment (e.g., SST,
stratification)

Value: The satellite record gives
Insight on ocean ecosystem responses
to future ocean warming (cooling)

Chlorophyll anomaly (Tg)
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Ocean Margins and Inland
- Waters




Turbid Water Retrievals

Wide variation in optical properties
of natural waters
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0 MODIS-Aqgua bands
In the Short-Wave
InfraRed (SWIR) have
significantly improved
retrievals in turbid
coastal regions

From: Wang, M. and W. Shi (2007) Optics Express, 15, 15722-15733.
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nique Algal Groups

0.15 -

d MODIS-Aqua band set has beenused  , ¢
to develop a ‘Floating Algal Index’ (FAI) =~ "°[

— essentially a ‘red-edge’ algorithm — that oos A

can be used to monitor unique algal

—a— Algae
—B— Water
+— Difference

MODIS/Aqua
6/25/2008,
Yellow Sea

groups such as Sargasso Weed 0.0g Ll

Graphs, images, & results from Chuanmin Hu, Univ. South Florida




O Using the FAI algorithm and MODIS-
Aqua data, the origins of a massive algal
bloom in coastal China could be determined
and linked to changing aquaculture practices

8002 “EU!'u:‘A)‘A‘oepﬁmo

Graphs, images, & results from Chuanmin Hu, Univ. South Florida



Understanding Blooms

O Using the FAI algorithm and MODIS-Terra data, changes in inland
noxious algal blooms in China could be monitored and linked to changing

nutrient inputs
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Graphs, images, & results from Chuanmin Hu, Univ. South Florida




O Combining MODIS-Aqua ocean and
land bands has allowed detection of
surface Trichodesmium blooms - a key
nitrogen fixing organism in the ocean

In situ Ry of a Tricho bloom
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Graphs, images, & results from Chuanmin Hu, Univ. South Florida



O Carbon dynamics are influenced by partitioning of
stocks between biotic and mineral particles

O The two classes have different polarization signatures
O Combining ocean color data with polarimeter data
from POLDER allows carbon stocks to be distinguished,

yielding information on land-ocean exchange and
coastal-to-open ocean carbon flow
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CHLOROPHYLL
FLUORESCENCE
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O In optically-complex
waters, fluorescence can
provide a better estimate
of phytoplankton stocks
than standard algorithms

Graphs, images, & results from Chuanmin Hu, Univ. South Florida
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Fluorescence

O Fluorescence also registers variations in phytoplankton pigments
globally, but the relationship is more complex than in specific regions
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Fluorescence

fluorescence
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Fluorescence
O The dominant physiological signal in fluorescence data is iron stress

satellite satellite vs model predicted

Autumn
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Fluorescence

L MODIS fluorescence data provided first observational
evidence for iron stress in the Indian Ocean

satellite | model predicted

Iron limited Nitroien limited
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Dsye (%0) GCI (relative)
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satellite vs model
predicted



Fluorescence
J MODIS fluorescence & field data are

new satellite findings

also providing the first evidence of iron %
stress in the North Atlantic bl =
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Iron limitation of the postbloom phytoplankton communities in the
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GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 23, GB3001, doi:10.1029/2008GB003410, 2009 Pliioicseonca Yield

Maria C. I\Jielsdc')ltir,l Christopher Mark Moore,1 Richard Sanders,1 Daria J. Hinz,l
and Eric P. Achterberg'
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A Role for Lidar

Phytoplankton Carbon

O Phytoplankton biomass (carbon) can
be related to the backscatter coefficient

O Having both carbon and chlorophyll
data allows assessment of phytoplankton
physiological status (health) and global
ocean photosynthesis

O Current biomass estimates are based on
ocean color inversion algorithms that
rely on a variety of assumptions

U Lidar measurements could provide an
alternative, active measure of light
scattering — thus phytoplankton biomass

Phytoplankton Chlorophyll

Images & analyses by Toby Westberry, Oregon State University



Lidar In-space Technology Experiment (LITE)

«  3-wavelength Nd-Yqg lidar

«  Space Shuttle in 1994

«  Multi-angle (+/-30°) maneuvers over Lake
Superior and Gulf of California
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O CALIPSO-CALIOP lidar sub-
surface particle scattering retrievals
show similar global patterns and
ocean color inversion retrievals

O Lidar data also show seasonal cycles
consistent with known oceanographic
features (e.g., seasonal high latitude
blooms)
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U Lidar data may provide an
independent ‘test bed’ for inversion
results or a constraint for inversion
solutions

Graphs, images, & results from Yong Hu, NASA Langley



Ocean Research with the A-Train

O Expanded observational capabilities of MODIS-Aqua have advanced
understanding of ocean ecosystems from the regional to global scale, in
particular regarding phytoplankton blooms and physiology

O The combined use of MODIS-Aqua, CALIPSO, and PARASOL data has
opened new roads for assessing ocean carbon stocks, characterizing their
composition, and monitoring their fate

O Additional opportunities exist for significantly improving ocean
retrievals by merging MODIS-Aqua data with A-Train atmospheric data







Paths for Scientific Advances

O Separation of absorption by phytoplankton pigments and colored dissolved organic
material remains a major issue. Approach: expansion into the near ultraviolet

O Inversion algorithms currently assume a given spectral shape for phytoplankton
absorption. Approach: derive phytoplankton absorption spectrum from higher spectral
resolution measurements

O Inversions assume a spectral shape for backscattering. Approach: increase spectral
resolution of measurements in the ‘green-yellow’ region of minimum pigment absorption

O Current assessments of phytoplankton groups are limited by heritage spectral bands.
Approach: high spectral resolution from near-UV through visible allows derivative
analyses of specific, taxonomically-unique pigment absorption features.

* 960 km swath width (6 d global coverage)
UV to NIR at high resolution (<1 nm)
30 km x 30 km pixel size




